Genes homologous to glycopeptide resistance vanA are widespread in soil microbial communities.

نویسندگان

  • Luca Guardabassi
  • Yvonne Agersø
چکیده

The occurrence of d-Ala : d-Lac ligase genes homologous to glycopeptide resistance vanA was studied in samples of agricultural (n=9) and garden (n=3) soil by culture-independent methods. Cloning and sequencing of nested degenerate PCR products obtained from soil DNA revealed the occurrence of d-Ala : d-Ala ligase genes unrelated to vanA. In order to enhance detection of vanA-homologous genes, a third PCR step was added using primers targeting vanA in soil Paenibacillus. Sequencing of 25 clones obtained by this method allowed recovery of 23 novel sequences having 86-100% identity with vanA in enterococci. Such sequences were recovered from all agricultural samples as well as from two garden samples with no history of organic fertilization. The results indicated that soil is a rich and assorted reservoir of genes closely related to those conferring glycopeptide resistance in clinical bacteria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Members of the genera Paenibacillus and Rhodococcus harbor genes homologous to enterococcal glycopeptide resistance genes vanA and vanB.

Genes homologous to enterococcal glycopeptide resistance genes vanA and vanB were found in glycopeptide-resistant Paenibacillus and Rhodococcus strains from soil. The putative D-Ala:D-Lac ligase genes in Paenibacillus thiaminolyticus PT-2B1 and Paenibacillus apiarius PA-B2B were closely related to vanA (92 and 87%) and flanked by genes homologous to vanH and vanX in vanA operons.

متن کامل

Glycopeptide antibiotic resistance genes in glycopeptide-producing organisms.

The mechanism of high-level resistance to vancomycin in enterococci consists of the synthesis of peptidoglycan terminating in D-alanyl-D-lactate instead of the usual D-alanyl-D-alanine. This alternate cell wall biosynthesis pathway is ensured by the collective actions of three enzymes: VanH, VanA, and VanX. The origin of this resistance mechanism is unknown. We have cloned three genes encoding ...

متن کامل

Long PCRs of transposons in the structural analysis of genes encoding acquired glycopeptide resistance in enterococci.

Glycopeptide-resistant enterococci (GRE) associated with multiple antibiotic resistance present a major challenge to clinical practice and infection control due to limited or nonexistent antimicrobial treatment options. The genes encoding VanA- and VanB-type glycopeptide resistance have been shown to reside on transposons Tn1546 and Tn1547, respectively. These transferable genetic elements may ...

متن کامل

Glycopeptide resistance vanA operons in Paenibacillus strains isolated from soil.

The sequence and gene organization of the van operons in vancomycin (MIC of >256 microg/ml)- and teicoplanin (MIC of > or =32 microg/ml)-resistant Paenibacillus thiaminolyticus PT-2B1 and Paenibacillus apiarius PA-B2B isolated from soil were determined. Both operons had regulatory (vanR and vanS), resistance (vanH, vanA, and vanX), and accessory (vanY, vanZ, and vanW) genes homologous to the co...

متن کامل

DdlN from vancomycin-producing Amycolatopsis orientalis C329.2 is a VanA homologue with D-alanyl-D-lactate ligase activity.

Vancomycin-resistant enterococci acquire high-level resistance to glycopeptide antibiotics through the synthesis of peptidoglycan terminating in D-alanyl-D-lactate. A key enzyme in this process is a D-alanyl-D-alanine ligase homologue, VanA or VanB, which preferentially catalyzes the synthesis of the depsipeptide D-alanyl-D-lactate. We report the overexpression, purification, and enzymatic char...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FEMS microbiology letters

دوره 259 2  شماره 

صفحات  -

تاریخ انتشار 2006